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Abstract Detection of quantitative trait loci (QTL) con-

trolling complex traits followed by selection has become a

common approach for selection in crop plants. The QTL

are most often identified by linkage mapping using

experimental F2, backcross, advanced inbred, or doubled

haploid families. An alternative approach for QTL detec-

tion are genome-wide association studies (GWAS) that use

pre-existing lines such as those found in breeding pro-

grams. We explored the implementation of GWAS in oat

(Avena sativa L.) to identify QTL affecting b-glucan

concentration, a soluble dietary fiber with several human

health benefits when consumed as a whole grain. A total of

431 lines of worldwide origin were tested over 2 years and

genotyped using Diversity Array Technology (DArT)

markers. A mixed model approach was used where both

population structure fixed effects and pair-wise kinship

random effects were included. Various mixed models that

differed with respect to population structure and kinship

were tested for their ability to control for false positives. As

expected, given the level of population structure previously

described in oat, population structure did not play a large

role in controlling for false positives. Three independent

markers were significantly associated with b-glucan con-

centration. Significant marker sequences were compared

with rice and one of the three showed sequence homology

to genes localized on rice chromosome seven adjacent to

the CslF gene family, known to have b-glucan synthase

function. Results indicate that GWAS in oat can be a

successful option for QTL detection, more so with future

development of higher-density markers.

Introduction

The objective of quantitative trait locus (QTL) mapping is

to identify genomic regions that are associated with a

phenotype of interest. The identified regions, linked to a

causal genetic variant, can be selected in a breeding pro-

gram with the goal of improving genetic gain per unit time

(Lande and Thompson 1990). Furthermore, identification

of causal variants increases our understanding of the

mechanisms that affect a trait, which may in turn lead to

improved selection methods. In linkage studies, experi-

mental and random F2, backcross, advanced inbred, or

doubled haploid families are developed. Although this

approach is powerful in QTL detection, the shortcomings
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of the approach are numerous (Jannink et al. 2001). The

high power to detect QTL linked to marker loci is due to

the extensive linkage disequilibrium (LD), spanning large

chromosomal regions, generated from the mating of two

inbred lines. A positive impact of such LD is the low

marker density required to adequately cover the genome.

Conversely, QTL positioning has low resolution such that

the marker could be as much as 10–30 cM (centi-Morgans)

from the causal allele (Kearsey and Farquhar 1998).

An alternative approach to QTL mapping is genome-

wide association studies (GWAS), also known as LD

mapping. In contrast to QTL mapping based on bi-parental

populations, GWAS uses a sample of lines from the broader

breeding population, unrelated by any specific crossing

design (Zhu et al. 2008). In such studies, associations

between genotype and phenotype depend on historical LD

broken down by many generations of recombination.

Hence, for GWAS a larger number of markers are required

to assure LD between markers and causative alleles

throughout the genome, thus enabling fine-scale mapping.

The reward, however, is that the short LD blocks that exist

in such groups of lines can result in high-resolution map-

ping of QTL. This situation is advantageous because the LD

utilized in selection for such QTL will not easily be broken

down by recombination. GWAS has been widely used in

human genetic studies where the development of experi-

mental populations is impossible. In contrast to the exper-

imental populations developed for linkage mapping, a

major issue facing GWAS is the unknown relationship

among individuals, also known as population structure that

can lead to spurious associations (Kennedy et al. 1992). To

statistically control for structure and the covariance among

individuals, a mixed model analysis (Yu et al. 2006) that fits

population structure, marker, and polygenic effects has

been widely implemented.

Oat (Avena sativa L.), a grass species grown as a grain

or forage crop predominantly in temperate short-season

regions, poses another issue for linkage mapping. Oat lacks

a consensus map, making comparisons with other QTL

studies difficult. Together, the adequate levels of LD and a

marker system that has the ability to saturate the genome

make GWAS a superior approach to identification of QTL

in oat. Newell et al. (2011) explored genome-wide LD

in oat and showed that to attain values of r2 = 0.2

between markers, one marker per centi-Morgan (cM) was

needed. The most comprehensive oat map available,

‘Kanota’ 9 ‘Ogle,’ is 1,890 cM (Wight et al. 2003); thus,

approximately 2,000 markers would be required to reach an

average LD between markers and causal alleles of 0.2.

Recent advances in Diversity Array Technology (DArT)

markers in oat and current single nucleotide polymorphism

(SNP) development can provide such density requirements

for oat.

Although oat production worldwide has been decreas-

ing, it is still highly prized for its positive health benefits.

The health benefits associated with consuming oat as a

whole grain is attributed to (1-3, 1-4)-b-D-glucan (hereafter

referred to as b-glucan), a hemicellulose found in cereal

endosperm cell walls (Fincher 2009). Research on the role

of oat b-glucan in the human diet has shown that it

improves health with respect to blood pressure (Keenen

et al. 2002), diabetes (Jenkins et al. 2002), cholesterol

(Braaten et al. 1994), and immune response (Estrada et al.

1997). b-glucan viscosity is a primary factor affecting the

aforementioned health benefits, although the mechanisms

involved are not well understood (Colleoni-Sirghie et al.

2003). Independent studies in oat and barley have dem-

onstrated a positive relationship between viscosity and

b-glucan concentration (Chernyshova et al. 2007; Izydorczyk

et al. 1998). Thus, b-glucan concentration is a good target for

selection in oat breeding programs.

An unintended consequence of the breeding process is

the loss of genetic variants that control valuable traits

(Robertson, 1960; Hill and Robertson, 1968). This is often

the case for elite material where intense selection, possibly

for other traits, has occurred and the useful genetic variants

are lost due to fixation of the undesired allele at a locus.

Thus, the identification of QTL in germplasm from world-

wide origin that includes breeding lines and landraces may

enable the use of genetic variants not currently found in

elite varieties. The objectives of this study were to (1)

conduct a GWAS to identify QTL associated with increased

b-glucan concentration in oat germplasm of worldwide

origin and, (2) determine the effects of population structure

in mixed model association analyses for oat.

Materials and methods

Genetic material

Genetic material was requested from the National Small

Grains Collection within the National Plant Germplasm

System. Selection of accessions was based on three criteria,

the standardized b-glucan values from the Germplasm

Resources Information Network (GRIN), the accession

origin, and a pre-screening of the materials to confirm their

ability to flower. Three data sets in the GRIN database

included b-glucan information, these included oat.beta-

glucan.madison.07, 91, and 95. Together these data sets

included over 6,000 varieties, breeding lines, and landraces

of worldwide origin. Because the three data sets were

measured in different years, and each set contained dif-

ferent lines, the values were standardized within each data

set. Standardized b-glucan values were calculated within

each data set as Z ¼ x�l
r where x is the raw GRIN b-glucan
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value, l is the mean for the particular data set, and r is the

standard deviation for the particular data set. In order to

increase power for the analysis, lines were chosen that

spanned the tails of the standardized b-glucan distribution.

The second criterion for selection was based on the origin

of accessions: lines were selected to maximize the diversity

of the germplasm set. This was done to sample the array of

alleles present in available oat germplasm. Approximately,

half of the lines selected were from the upper tail and half

were from the lower tail of the distribution while taking

into account the origin of the materials. At this stage, 607

lines were requested from GRIN and pre-screened in a

single environment to confirm their ability to flower in the

target environment. Information about the 466 lines

included in the study is provided in Online Resource 1.

Genotypic and phenotypic analysis

Plants were grown under greenhouse conditions and tissue

was collected from a single plant of each accession.

Extraction of DNA was done with methods prescribed by

Diversity Arrays P/L, Canberra, Australia and described by

Tinker et al. (2009). Accessions, derived from a single DNA

parent plant, were grown as hill plots in Ames, Iowa in 2009

and 2010 in an incomplete block design. Years, replicates,

and incomplete blocks were considered as fixed effects and

accessions as random effects. Two replicates were grown in

both 2009 and 2010 where incomplete blocks consisted of

5 9 5 hill plots. For the 2009 and 2010 season, hill plots

were grown at 40 and 12 in. apart, respectively. Field

checks for b-glucan included nine varieties and breeding

lines representing a range of b-glucan concentration. Plots

were harvested, threshed, cleaned, and 0.5–3 g of seed per

hill, depending on availability, were dehulled using a

compressed-air oat laboratory dehuller manufactured by

Codema Inc. (Eden Prairie, MN). The field design was

conserved for laboratory analysis of b-glucan. An enzy-

matic approach for evaluation of b-glucan concentration

was implemented using the streamlined mixed linkage

b-glucan kit (Megazyme Int., Wicklow, Ireland) with minor

modifications. The laboratory protocol was modified to

increase the throughput capability by reducing reagent

amounts by 90 %, thus enabling use of a 96-well plate for

evaluation (Newell et al. 2012). Although 0.5–3 g of seed

per hill was initially ground, 8–12 mg of the flour was used

for the b-glucan assay. Statistical analysis for b-glucan was

implemented in SAS version 9.2 (SAS Institute 2010) using

PROC MIXED for mixed-effects models.

Data cleaning

To remove possible errors and redundancies in markers and

lines that may cause false associations, a data-cleaning step

was performed using the R statistical software (R Develop-

ment Core Team 2009). This included a four-step process, all

of which have been previously described as necessary steps

in preparation of GWAS (Miyagawa et al. 2008). Initially,

the data set consisted of 466 accessions and 1001 DArT

markers. First, markers with call rates of less than 0.8 were

removed; this step was implemented to remove markers that

likely contained errors. This step removed only one marker,

resulting in 466 accessions and 1000 markers. Second,

markers with minor allele frequency (MAF) of less than 0.01

were removed, as they do not contribute substantially to the

variation in the data. This step reduced the number of

markers from 1,000 to 982 markers. We realize that alleles at

a frequency of 0.01 will only be present in five individuals,

giving them little power to be associated with a QTL. At the

same time, if a QTL allele segregates at this low frequency, it

will only be possible to tag it with a low-frequency marker.

We therefore opted to leave in such low-frequency markers.

Third, markers were merged that diverged by less than 1 %

across the genotyped lines, thus combining markers that were

in near perfect LD. This step resulted in a matrix of 466

accessions and 796 markers. Lastly, accessions that differed

by less than 1 % on the markers were merged, thus removing

accession redundancies. After implementation of this step,

the final data set was reduced to 431 accessions and 796

markers (Online Resource 2). After data cleaning, the mean

value for each marker across lines was used to impute

missing values for each marker.

Association analysis

Association analysis to identify QTL controlling oat

b-glucan was implemented in R using the GWA function

with modification in the rrBLUP package (Endelman

2011). The GWA function applies a mixed-linear model

that can account for both population structure and marker-

based kinship, denoted by K, originally described by Yu

et al. (2006). The model used for association analysis was

Y = mean ? Ma ? Pv ? Zu ? e where Y is a vector of

b-glucan BLUPs from the analysis of phenotype (above), a

is a vector of marker fixed effects, v is a vector of popu-

lation structure fixed effects, and u is a vector of random

polygenic effects. M is a matrix of marker scores for the

markers included in the model. P is described in detail

below. Z is the incidence of the polygenic effects in the

observations and was taken to be an identity matrix. The

variance of u is assumed to be var(u) = 2KVg where K is

the marker-based kinship matrix and Vg is the polygenic

effect variance. Marker-based kinship was calculated using

the emma.kinship function in the emma package (Kang

et al. 2008). Models that did not include K in the mixed

model used an identity matrix indicating no relationship

between individuals.
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Models accounting for differing levels of population

structure fixed effects with and without K were assessed.

The first model, denoted by P1, included the np principal

components that were significantly correlated with the

response variable at p B 0.01. Hence, np was chosen based

purely on the number of significant axes. The second

model, denoted by P2, included the first np principal

components, a common approach used when principal

component analysis (PCA) is used to account for popula-

tion structure. For both models, the number of dimensions

was equal to np, thus comparisons could be made across

models. In all, six models were assessed including P1, P1K,

P2, P2K, K, and a simple model where neither P nor K was

included in the model. The six models were assessed for

their ability to control for type I errors by plotting the

distribution of p values for the markers, where uniformly

distributed p values indicate proper control for type I

errors. The Benjamini and Hochberg (1995) false discovery

rate (FDR) at 0.25 was used to control for multiple testing.

Two R2 measures were used to assess the amount of vari-

ability explained by each marker. In addition to the stan-

dard measure, R2, the likelihood ratio-based R2 denoted by

R2
LR was also calculated, as it has been shown to be a better

estimate of R2 in GWAS (Sun et al. 2010). In order to

determine how the significant markers affect percent

b-glucan, the preferred model from the above analysis was

used for analysis of the subset of significant markers.

Rice sequence homology

It is unlikely that the DArT markers identified as significant

are functional; instead, they likely rely on LD with the

causal locus. Therefore, the sequences of the significant

DArT markers were compared for their sequence homol-

ogy with the rice (Oryza sativa L.) genome in a three-step

approach. First, a set of candidate genes in rice were

identified that included all of the Csl and the CesA gene

families. These genes were chosen because the Csl gene

family has been shown to be involved in b-glucan bio-

synthesis (reviewed by Burton and Fincher 2009) and the

CesA family in cellulose synthase. The CesA gene family

was also included because it has been shown to encode the

catalytic subunit of cellulose synthase and is likely co-

regulated with genes in the Csl gene family (Burton et al.

2004). Second, significant DArT sequences (available in

Tinker et al. 2009) were compared based on their sequence

homology with the entire rice genome with an E-value

threshold of 1 9 10-15 and a hit score of greater than 500

(Ouyang et al. 2007). This level of stringency was used

because it is expected that there may be differences in

sequence given the interspecies nature of the sequences.

Lastly, because it is likely that the significant DArT

sequences are not functional, but depend on LD with the

causal locus, we tested if the DArT sequences were adja-

cent to the rice candidate genes. A threshold distance for

declaring a DArT sequence to be adjacent to a rice can-

didate gene was determined by picking a point at random in

the rice genome and determining its distance in kb with the

nearest rice candidate gene. This process was repeated

1,000,000 times to construct the distribution of distances

under the null hypothesis that DArT sequence positions

were random relative to rice candidate genes. The distance

at the 5 % quantile of this null distribution was taken as the

threshold to declare adjacency to a candidate gene. Thus, a

DArT sequence within the 5 % quantile, 247 kb, of a rice

candidate gene is said to be adjacent to that gene.

Results

Germplasm selection

In total, 466 accessions were selected ranging in standardized

b-glucan from -3.27 to 4.74 % with a bimodal distribution

of b-glucan concentration reported in GRIN. The number of

lines that were classified as either high or low based on the

standardized b-glucan values were 238 and 228, respectively.

The lines in the distribution with lower b-glucan values

ranged from -3.27 to -1.33 %, whereas the higher distri-

bution ranged from 0.57 to 4.74 %. Thus, selection based on

this criterion was apparent in the distribution. The second

criterion was selection of lines in order to increase the

diversity of the germplasm set. In total, the selected acces-

sions were from 49 countries from around the world (Fig. 1).

The majority of lines were from the USA, Turkey, Germany,

and the Russian Federation with 171, 32, 28, and 27 lines,

respectively. For the top 14 countries that accounted for most

of the lines in the set, most were evenly split between the

high and low b-glucan classifications according to GRIN.

Phenotypic analysis

Raw b-glucan values were lower than expected and ranged

from 1.44 to 6.20 % with an average of 3.90 % b-glucan.

Best linear unbiased predictions (BLUPs) for b-glucan

ranged from -1.38 to 2.40. Model assumptions were

diagnosed by graphical representation of the residuals and

the correlation between the residuals and fitted values.

Residuals were normally distributed and there was no evi-

dence of correlation between the residuals and fitted values,

and thus model assumptions were met. There was a sig-

nificant (p value \ 0.0001) and non-significant (p value =

0.4081) genotype 9 year and genotype 9 rep within year

interaction, respectively, for b-glucan content. Although

there was a significant genotype 9 year interaction, data

were analyzed jointly because predictions were highly
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correlated across years (0.87) and this enables identification

of stable alleles across environments. As expected, due to

the procedure in which the lines were selected, the distri-

bution of b-glucan values was bimodal (Fig. 2). Field

checks ranged from -0.64 for Buff, a naked oat bred for

high protein content to 2.40 for N979-5-1-22, an Iowa State

University line bred for high b-glucan concentration. Three

of the checks (HiFi, ND030288, and N979-5-1-22) had

b-glucan values greater than any of the lines included in the

study. The average b-glucan BLUPs for the two selection

groups according to the GRIN classifications were -0.34

and 0.34 for the low and high class, respectively. There was

a highly significant correlation (r = 0.68) between the

GRIN and b-glucan BLUPs (Fig. 3).

Population structure and kinship

The level of population structure in the data set was

explored to gain insight into its possible effect on the

association analysis. Principal component analysis on the

marker data (with missing scores for a marker imputed as

the mean value for that marker) showed that the first three

axes accounted for only 14.5, 6.1, and 3.7 % of the total

variation in the data. These low levels of variation

explained, along with visualization of the principal com-

ponents, indicated that population structure among the lines

was weak as compared to other grass species such as barley

(Hamblin et al. 2010). There are three small groups of lines

that do tend to deviate from the average set of lines

included in the study; these groups can easily be seen in

principal components two and three (Fig. 4). The first

group, designated as group A, contains 17 lines in which

the majority is from Turkey and all but three are landraces.

The second group, designated group B, contains eight lines,

all being from MD, USA except one that is from South

Africa. The third group, designated group C, contains 16

lines, all breeding lines from Maryland, USA. Besides

these three groups of lines (41 in total), the remaining lines

Fig. 1 Bar graph showing the

countries of origin for the lines

included in the study colored by

the GRIN b-glucan

classification. Counts are

represented by the

ln(count) ? 1 with values for

High and Low GRIN

classification stacked within

each country
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do not form distinct clusters with respect to the first three

principal components. Mean b-glucan values for the groups

were 3.57, 4.17, 3.62, and 4.06 for groups A, B, and C, and

the remaining lines, respectively. These results of low

levels of population structure are in agreement with pre-

vious results for oat that included a wide variety of

germplasm of worldwide origin (Newell et al. 2011).

Evaluation of P in the mixed model

The effect of population structure in the mixed model

approach was tested by observation of each model’s ability

to reduce the number of false positives. In order to assess a

model’s ability to account for this, the distribution of

observed p values for the six models was plotted in the

negative log10 scale (Fig. 5). The null hypothesis, or

expectation, follows a uniform distribution represented by

a diagonal line. When there is an over-abundance of low

p values, the distribution of p values does not follow this

line, but rises above it on the negative log scale. In contrast,

a model that sufficiently accounts for the number of false

positives follows the expectation except for the few sig-

nificant markers. Five principal components (5, 14, 25, 30,

and 31) were significantly correlated to b-glucan, and thus

the population structure fixed effects included five dimen-

sions. For P1, 5 % of the total variation in the data was

explained by the significant PCs. This is far less than for P2

in which the first five principal components accounted for

30 % of the total variation. Among the six models tested,

P1, P2, and the simple model did not sufficiently reduce the

number of false positives. The only model that showed

Fig. 2 Distribution of b-glucan BLUPs for the lines showing the

bimodal distribution as a result of the selection process. Triangles
beneath the distribution represent the b-glucan BLUPs for field

checks including Buff, Excel, Winona, Cherokee, IA02130-2-2,

Baker, HiFi, ND030288, and N979-5-1-22 from left to right,
respectively

Fig. 3 Scatter plot showing the relationship between the GRIN

standardized b-glucan values and the b-glucan BLUPs based on

2 years with two replicates per year. The dashed line represents the

regression between the two measures (correlation = 0.68)
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Fig. 4 Principal component 2 (PC2) versus PC3 computed on the

marker data for the 466 accessions used in this study. PC2 and PC3

accounted for 6.1 and 3.7 % of the variation in the data, respectively.

Three groups, referred to as A, B, and C, are clearly separated from

the remaining lines
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improvement over the simple model in decreasing the

number of false positives for these three models was P2;

this result is most likely due to the model fixed effects

accounting for a large amount of the variation in the

marker data (30 %). The P1 model did not show an

improvement over the simple model most likely for the

same reason. In contrast, when K was included in each of

those three models, the distribution of p values followed

the expected uniform distribution. This indicated that the

addition of K in the model sufficiently accounted for

relationships between individuals and effectively reduced

the number of false positives. In addition, it also demon-

strated the small effect that principal components can have

on the number of false positives regardless of whether they

comprise a small (P1) or large (P2) proportion of the var-

iation in the data.

Association analysis

As expected from the evaluation of P in the mixed model,

models that did not include K identified a large number of

significant, false positive markers. The P1, P2, and simple

models had 398, 286, and 441 significant (FDR \ 0.25)

markers, respectively. Given such large numbers of sig-

nificant markers that are likely false positives, these models

were excluded from further analyses. The numbers of

significant markers were greatly reduced with the addition

of K in the mixed model, where the P1K, P2K, and K

models had only three, two, and two markers significantly

associated with b-glucan (FDR \ 0.25; Fig. 6). Two of the

significant markers were in common to all models. These

were oPt.0133 and oPt.17174/oPt.8715, where the forward

slash refers to makers that were merged during data

cleaning. A third marker, oPt.6825/oPt.0112, was signifi-

cantly associated with b-glucan according to the P1K

model. Thus, three independent markers were identified as

significant in the P1K model and were not in LD with one

another (between marker r2 values ranged from 0.004 to

Fig. 5 Distribution of p values for the six models included for

evaluation of P in the mixed model. Axes represent the cumulative

p versus the observed p in the negative log10 scale where the dashed
line represents the null expectation. Models that do not include K (P1,

P2, and simple) do not adequately account for false positives in

contrast to P1K, P2K, and K that effectively reduce the number of

false positives

Fig. 6 Manhattan plots for the eight models used for association analysis showing the scores for each marker in no particular order calculated as

-log10(p). Significant scores using an FDR of 0.25 are represented by bold points
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0.031). The R2 and R2
LR values varied around about 3 % for

all of the markers across models. The three markers that

were identified, oPt.0133, oPt.6825/oPt.0112, and

oPt.17174/oPt.8715, affected beta-glucan concentration by

0.37, 0.26, and 0.25 %, respectively (Table 1).

Rice sequence homology

As part of the three-step process for the rice sequence

comparison, 47 candidate rice genes were identified that

were within the Csl and CesA gene families. The 47 rice

candidates spanned all of the rice chromosomes with most

occurring on rice chromosome seven. The fewest rice

candidates occurred on rice chromosome 11 with only one

DArT sequence that had sequence homology to the rice

candidates. In total, five oat DArT sequences were com-

pared with rice for sequence homology because two of the

significant markers had been merged. The DArT marker

sequences included were oPt.0133, oPt.6825, oPt.0112,

oPt.17174, and oPt.8715. Two of the markers, oPt.17174

and oPt.8715, which were merged, resulted in no sequence

homology with the rice genome and were thus excluded

from further evaluation. The remaining three markers,

oPt.0112, oPt.6825, and oPt.0133, had significant sequence

homologies with 1, 3, and 33 sequences, respectively, to

the rice genome. By our definition of adjacent, one of the

DArT sequences, opt.0133, with homology to rice was

adjacent to the CslF gene family, including CslF1, 2, 3, 4,

8, and 9. The sequence with homology to oPt.0133 in rice

on chromosome seven was within 137 kb of all of the

genes in the CslF gene family. The CslF gene family is

known to have b-glucan synthase function (reviewed by

Fincher 2009). Information concerning the rice sequence

homology including rice candidates and DArT marker

homology are included in Online Resource 3.

Discussion

Numerous research studies have been implemented for

GWAS using the mixed model approach that accounts for

population structure and pair-wise kinship, initially

described by Yu et al. (2006). For this study, we evaluated

the inclusion of population structure fixed effects in the

model. We found that including P, as principal compo-

nents, in the model did not substantially decrease the

number of false positives. Also, the number of false posi-

tives decreased as the amount of marker variation that the

principal components accounted for increased. Similar

results were found for simulated data where the K model

performed as well or better than models including popu-

lation structure (Bradbury et al. 2011). The Bradbury et al.

(2011) study found this result to be consistent across

varying numbers of QTL and heritability estimates. Simi-

larly, the initial publication by Yu et al. (2006) found that

including population structure showed an improvement

over not including it only for traits highly correlated to

population structure. This could partially explain the results

in our study where the small influence of P in the mixed

model was indicative of the low levels of population

structure that exist in oat. One concern for oat is the effect

of population structure due to spring and winter types and

two, but inter-breeding species, A. sativa and the red oats

(A. sativa ssp. byzantia K. Koch); however, visualization of

the principal components did not exhibit these types in the

panel evaluated. Newell et al. (2011) suggests that although

these four groups do exist in oat, the majority are spring

sativa types and population structure due to these groups is

small because of admixture. In addition, the third criterion

for selection of lines included a pre-evaluation for vernal-

ization requirement, thus excluding winter types from the

panel. In contrast to these results, Stich et al. (2008)

implemented GWAS in wheat and found that including P

in the mixed model improved control of false positives

relative to just including K. However, as pointed out in

Stich et al. (2008), inclusion of P in the mixed model had a

large effect most likely because of the high levels of

population structure that exists in wheat.

Three independent markers were identified to be asso-

ciated with increased b-glucan concentration, two of which

were in common for the three models that included K and

one that was only significant in the P1K model. Previous

studies have identified QTL associated with increased

b-glucan concentration in oat (Kianian et al. 2000; De

Koeyer et al. 2004). These were linkage mapping studies

conducted on recombinant inbred line populations derived

by crossing two inbred lines. Unfortunately, there was no

agreement between the results presented here and previous

studies. It is difficult to make a good comparison between

this and previous studies because the map position of only

Table 1 Results of the significant markers for the P1K, P2K, and K

models including the score, R2, R2
LR, the FDR q-value obtained using

the Benjamini and Hochberg method for multiple testing, and the

marker effects

Marker name

oPt.0133 oPt.6825/

oPt.0112

oPt.17174/

oPt.8715

Model P1K, P2K, K P1K P1K, P2K, K

Score [-log10(p)] 3.33, 3.69, 3.48 3.15 3.09, 3.29, 3.41

R2 (%) 2.7, 3.2, 3.0 2.6 2.5, 2.8, 2.9

R2
LR (%) 2.8, 3.1, 2.9 2.6 2.5, 2.7, 2.8

q-value 0.22, 0.16, 0.16 0.22 0.22, 0.20, 0.16

Marker effect -0.366 -0.264 -0.248

The FDR cutoff for significance was 0.25. Marker names separated by

a forward slash represent merged markers as a result of the data-

cleaning steps
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one of the three significant markers in our study is known

(oPt.6825/oPt.0112 on linkage group 8; Tinker et al. 2009).

Lastly, given the diversity of alleles represented in this

study compared to previous studies, one might not expect a

high level of agreement between them.

Despite the wide range of b-glucan in our panel, we

identified only three independent markers significantly

associated with b-glucan concentration. There are three

possible explanations for this low number of associations.

First, the marker density we had available may have been

insufficient given the decay of LD to r2 = 0.2 at 1 cM,

(Newell et al. 2011). Hence, polymorphisms causing vari-

ation in b-glucan may have been in linkage equilibrium

with our markers, and higher marker densities could have

uncovered more QTL. A concurrent GWAS in elite oat

using a similar marker set identified 15 markers signifi-

cantly associated with b-glucan concentration (FG Asoro,

personal communication). Though a less stringent FDR

was used in that study (0.33), the greater number of asso-

ciations identified may have come from the less rapid

decay of LD in that panel of North American elite lines as

compared to the global panel used in this study. A second

reason for the low number of associations identified here

may be that our global collection had more rare alleles

causing variation in b-glucan than did the elite panel. Rare

alleles cause less variation in the data and therefore may

not be detected. Rare alleles are a leading hypothesis for

the observation of ‘‘missing heritability’’ in human asso-

ciation studies (Yang et al. 2010). A third possibility that

we cannot exclude is that the DArT markers were devel-

oped from a genetically narrow set of germplasm in rela-

tion to the lines used in this study. However, the DArT

markers were developed from a panel of 182 accessions of

global representation; thus, we do not believe that there

would be much ascertainment bias in the marker devel-

opment given this broad panel. It is also important to

point out that there is the possibility that loci controlling

b-glucan can appear co-located with loci controlling yield

due to dilution effects. In order to test this, we also ana-

lyzed the phenotypic data with yield as a fixed effect.

However, BLUPs from the analyses with and without yield

as a fixed effect had a correlation of greater than 0.99,

giving a strong indication that this was not the case.

The five oat DArT sequences identified as significant

were also compared for sequence homology with rice in a

three-step process to enable the significant markers to be

matched by location to potential rice candidates. The three-

step approach was implemented because it is unlikely that

the DArT sequences are functional themselves but instead

rely on LD with the causal locus. Synteny between oat and

rice, however, would show the DArT marker to fall in a

region with rice candidate genes. DArT sequences that fall

within regions of likely candidates may support the notion

that the DArT marker is truly associated with b-glucan

concentration. Three of the markers had sequence homol-

ogy to rice; one of these DArT sequences, opt.0133, was

located on rice chromosome seven and was, by our defini-

tion, adjacent to the CslF gene family. However, it must be

taken into consideration that the opt.0133 DArT marker has

sequence homology with 33 sequences in the rice genome.

Though our test does not pass multiple testing as it was

designed only for single sequence tests, it does satisfy

greater thresholds of 519 and 3.1 9 10-17 for hit score and

E value, respectively, which we believe is of high value.

The CslF gene family was previously shown in rice (Burton

et al. 2006) and barley (Burton et al. 2008) to have b-glucan

synthase function. To date, b-glucan QTL have not been

identified in oat within proximity to the CslF gene family

based on comparative genomics methods using information

from the other grass species. The results presented indicate

that the lines in the NPGS could possess valuable alleles for

b-glucan concentration not found in elite oat.
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